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Abstract— The challenge of waste management de-
mands innovative solutions, particularly in automat-
ing waste sorting processes. This project addresses
this critical issue by exploring the efficacy of robotic
object rearrangement on conveyor belts, a key step
in automated waste sorting systems. The primary
objective is to augment the discovery and segregation
of waste items, facilitating more efficient sorting. To
achieve this we introduce and evaluate three distinct
methods: KMeans clustering, Principal Component
Analysis (PCA), and Density Estimation. These tech-
niques are employed to determine strategic start
and end points for creating trajectories along which
a robotic arm moves to rearrange objects on the
conveyor belt.

The crux of our research lies in the development
and application of two novel metrics designed to
measure the effectiveness of object discoverability
and spatial distribution post-rearrangement. These
metrics allow for quantifiable assessment of each
method’s performance in spreading objects apart,
thus enhancing the potential for precise waste iden-
tification and categorization. By implementing these
methodologies, the project aims to increase the ac-
curacy and efficiency of waste sorting, minimizing
manual intervention and fostering a more sustainable
approach to waste management.

The expected outcome is a robust framework that
not only optimizes waste sorting but also serves as a
scalable model adaptable to various contexts within
the realm of automated material handling and sorting.
This research not only contributes to the field of
waste management but also advances the capabilities
of robotic automation in complex sorting tasks.

I. INTRODUCTION

One of the significant challenge in robotic waste
sorting lies in enabling the robot to recognize and
handle objects that are partially obscured by other
objects. To address this, we have developed an
end-to-end pipeline using ROS (Robot Operating
System) (Fig 1), specifically designed to enhance
the uncovering and identification of objects on
conveyor belts. This system represents a significant

step forward in overcoming the obstacles associated
with automated waste sorting. By focusing on im-
proving the visibility and accessibility of objects,
our solution aims to streamline the sorting process,
paving the way for more efficient and accurate
waste management.

Key metrics have been identified for evaluating
the performance of the sweeping actions performed
by the robotic system. These metrics are designed
to quantitatively assess the effectiveness of the
robot in redistributing objects on the conveyor belt,
thereby improving object segregation and identi-
fication. This evaluation framework is crucial for
optimizing the sorting process and ensuring the
reliability and efficiency of the robotic system.

To establish a comprehensive understanding of
the system’s capabilities, we have instituted several
baseline methods for sweeping the objects. These
include KMeans clustering, Principal Component
Analysis (PCA), and Density Estimation. Each
method offers a unique approach to determining
the most strategic start and end points for the
robot’s sweeping trajectory. By implementing these
methods, we aim to explore various strategies for
rearranging objects, ultimately identifying the most
effective technique for uncovering and segregating
waste items.

The objective of this project is to refine and en-
hance the process of object rearrangement. By im-
proving the robot’s ability to uncover and separate
waste items on the conveyor belt, we expect to sig-
nificantly boost the efficiency and accuracy of waste
sorting. This not only contributes to more effective
recycling processes but also aligns with broader
environmental sustainability goals. The outcomes
of this project are anticipated to have a substantial
impact on the field of waste management, poten-
tially leading to innovative solutions that can be
adopted in various industrial applications.



II. RELATED WORK

Effective waste management is crucial environ-
ment sustainability. One key aspect of this is sorting
garbage, which significantly reduces the volume
of waste that ends up in landfills [1]. Automating
the segregation process of garbage is of paramount
importance. The primary reason for this is the
enhancement of safety and efficiency. Manual sort-
ing of waste can be hazardous, exposing workers
to potentially dangerous materials and unsanitary
conditions. By automating this process, we not only
safeguard the health and well-being of workers but
also improve the efficiency of waste sorting [2].

Many waste identification and sorting methods
heavily relies on vision-based systems. [3] studies
Convolutional Neural Networks(CNNs) applied on
datasets such as WASTE and TrashNet. The authors
have identified the data limitations and hardware
requirements of using a deep neural network like
CNNs. In paper [4], the authors critically examined
current computer vision based solid waste sorting
methods. However these vision systems are not
integrated with practical robotic applications. We
present an innovative simulation of a robotic manip-
ulator,specifically designed to rearrange objects that
mimic waste items. our focus is on implementing
baseline methods for object rearrangement in the
context of robotic waste sorting. These methods
provide efficiency and data economy. This effi-
ciency is crucial in real-world waste sorting envi-
ronments where the ability to rapidly and reliably
process large volumes of waste is paramount.

In order to effectively sort objects, it is crucial
to have clear visibility of the object. [5] explain
the challenges inherent in robotic manipulation for
sorting, particularly in scenarios involving densely
cluttered scenes, objects with similar visual fea-
tures, and irregular shapes. To address these chal-
lenges, they propose a deep Q-learning method for
interactive segmentation, tailored to enhance in-
stance segmentation in complex environments. This
method, pioneering in the field, employs a deep
reinforcement learning framework. It optimizes a
Q-value function to determine the most effective
non-prehensile manipulation actions, like pushing,
to improve object singulation and visibility. The

approach is distinctively innovative, as it leverages
depth images and trains a Mask-RCNN model to
generate reward signals, thereby facilitating the
autonomous segregation of objects in cluttered set-
tings. Our research centers on the exploration of
non-learning-based approaches for determining the
trajectory of robotic manipulators.

As highlighted in [5], managing texture-less ob-
jects poses a significant challenge in robotic ma-
nipulation, a scenario that is particularly common
in the field of robotic waste sorting, as noted by
[6]. Our method is immune to this challenge as
we rely on point cloud data and is not dealing
with image segmentation problem. Our method
effectively circumvents this challenge by utilizing
point cloud data, steering clear of the complexities
associated with image segmentation.

Interactive segmentation has received extensive
attention in the field of robotics, as evidenced by a
wealth of literature [7], [8], [9]. The predominant
approach in these studies involves over-segmenting
the image into super-pixels. These super-pixels are
then tracked across consecutive frames, clustered,
and ultimately assigned to their respective objects.
This methodology is fundamental in understand-
ing and improving the interaction between robotic
systems and their operational environments. We
present an interactive method designed to sort and
search objects in cluttered workspace, a solution
with significant potential for robotic waste sorting
and various other robotics applications.

III. METHODOLOGY

Our proposed method leverages the advanced
simulation capabilities of the Unity3D environment.
This setup allows for a realistic and controlled
replication of the waste sorting scenario, provid-
ing a robust platform for testing and refining our
algorithms. Key to our approach is the extrac-
tion and processing of point cloud data. Utilizing
ROS (Robot Operating System) packages, we ef-
ficiently gather information from the workspace.
This data forms the basis of our simulation, en-
abling the robotic arm to interact with the objects
in its environment. Our pipeline, as illustrated in
Fig. 1, involves several stages of preprocessing



and filtering of the collected point cloud data.
These stages include Plane Segmentation, Extrac-
tion of Non-Planar Points, Voxel Grid Down-
sampling, and Outlier Removal. Once prepro-
cessed, the point cloud data is utilized by the
scene understanding node, which runs the sweep-
ing algorithm and evaluate its performance.

The workspace depicted in Fig. 2 depicts the
experimental setup. A robotic arm is tasked with
sweeping piles of waste, which are conveniently
modeled as cubes for ease of representation and
analysis. To rigorously evaluate our method, we
have developed 27 unique pile configurations, each
specifically designed to test different aspects of our
system. These configurations are categorized and
named for ease of reference: ’lp’ (longitudinal pile),
’tp’ (transverse pile), ’cp’ (cross pile), followed by
’mp1’ to ’mp4’, and ’p1’ to ’p20’. This diverse
array of configurations ensures a comprehensive
assessment, covering a wide range of scenarios
that a robotic system may encounter in real-world
applications. This setup serves as a critical testing
ground for evaluating various baseline methods,
including K-means clustering, Principal Compo-
nent Analysis (PCA), and density estimation tech-
niques. The performance of these algorithms to find
a effective sweeping path is evaluated using the
metrics mentioned in IV and are integrated to the
scene understanfding node.

IV. FORMULATION OF EVALUATION METRICS

We developed two unique evaluation metrics
that take into account the vertical dimension as
well as the spatial distribution of the objects in
the workspace in order to thoroughly evaluate the
effectiveness of our sweeping methods.

A. Standard deviation of point combined with
height variance

The standard deviation of the point cloud com-
bined with height variance can be expressed as
follows: Let P be the point cloud with n points,
where each point pi is represented as a three-
dimensional vector pi = (xi, yi, zi).

Fig. 1: Flowchart of the Pipeline for simulation

Fig. 2: Workspace in simulation

1) Height Variance: The variance in height, as-
suming height is in y-direction, is calculated as:

σ2
y =

1

n

n∑
i=1

(yi − ȳ)2 (1)

where ȳ is the mean of y-values of all points in
P.

2) Standard Deviation: The standard deviation
for each dimension is calculated as:

σx =

√√√√ 1

n

n∑
i=1

(xi − x̄)2 (2)



(a) mp3 configuration before sweeping

(b) mp3 configuration after the sweep

Fig. 3: Demonstrating how the sweep operation
spreads mp3 configuration on the workspace
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Where x̄, ȳ, z̄ are the mean values of the x,y, and z
coordinate of points in P respectively. The overall
spread S is the mean values of the x,y,z coordinates
of all points in P respectively.

S =
σx + σy + σz

3
(5)

3) Combined Metric: The final metric M that
combines the standard deviation with the height
variance is given by:

M = S + C · σ2
y (6)

Where C is a constant factor used to scale the
contribution of height variance. We chose C is set
to 10.

B. Geometric Spread combined with height vari-
ance

For the geometric spread calculation, we define
the metric as follows:

1) Area Calculation: For each ’pile’ of points at
a particular height level h, we define the area Ah

as:

Ah = (max({xi})−min({xi}))·(max({zi})−min({zi}))
(7)

where xi and zi are the x and z coordinates of
the points in the pile at height h.

2) Total Spread: The total spread TS is the sum
of the areas of all piles:

TS =
∑
h

Ah (8)

3) Volume Calculation: The total volume V con-
sidering the height variance is calculates as:

V = TS · (max({yi})−min({yi})) (9)

4) Combined Metric for Geometric Spread: The
final geometric spread metric GS combined with the
height score is:

GS = V + C · σ2
y (10)

where C is the same constant factor as used in the
standard deviation metric.

V. BASELINE SWEEPING METHODS

For the purpose of this study, we established
three baseline methods to systematically sweep ob-
jects in the workspace. These methods were chosen
for their distinct approaches to handling spatial
data, allowing for a comprehensive analysis of their
effectiveness in different scenarios.

A. KMeans Clustering

This method involves segmenting the workspace
into clusters based on the proximity of points in
the point cloud data. KMeans clustering [10] iden-
tifies central points (centroids) and groups nearby
objects, guiding the sweep path towards these dense



clusters. This method is particularly effective in
scenarios where objects are unevenly distributed
across the workspace.

B. Principal Component Analysis(PCA)

PCA [11] is employed to identify the principal
directions of variance in the point cloud data. By
determining these directions, the sweeping path
can be oriented to align with the second major
axes of object distribution, thus ensuring a com-
prehensive coverage of the area. PCA is useful in
understanding the underlying structure of the object
distribution in the workspace.

C. Density Estimation

We have introduced a novel technique to esti-
mate the density of objects in different areas of
the workspace. By calculating the concentration of
points in each grid cell of the workspace, the sweep
path is directed from the highest to the lowest
density area. Density estimation is beneficial in sce-
narios where object distribution varies significantly.
We formulated a direct method for the purpose of
our project. The method(Fig. 4) is initialized by
dividing the workspace into a grid of cells. We cal-
culate the density of each cell based on the number
of points in each cell. The manipulator must plan
a trajectory from the highest to lowest dense cell.
The method introduced is notably straightforward,
yet it demonstrates the capability to yield results
that are comparable to more complex approaches.
This balance of simplicity and effectiveness clearly
shows its potential applicability in various practical
scenarios.

VI. RESULTS AND DISCUSSIONS

Our study’s findings, as outlined in Table. I-III,
demonstrate the sweeping method’s performance
across various scenarios. Notably, the KMeans-
based approach achieved successful sweeps in 26
out of 27 configurations. This high success rate
underscores the method’s effectiveness in rearrang-
ing objects for better sorting and identification. In
Fig. 3, we showcase a successful sweep operation
executed within a simulated environment, utilizing
the K-means algorithm. As illustrated in Fig 5, all
observed difference values are either positive or

Fig. 4: Demonstration of density estimation method

zero, with a zero difference suggesting no change
in the pile post-sweep. Conversely, both Fig 6
and Fig 7 show instances of negative difference
values. These negative values signal ineffective
sweeps, where the process results in additional
clutter or fails to adequately disperse the cubes.
This distinction is critical in evaluating and refining
the sweeping methods for optimal performance. In
contrast, PCA resulted in successful sweeps in 23
of the 27 configurations, as detailed in Table. II.
Although slightly less effective than the KMeans
method, PCA still shows considerable promise in
enhancing the waste sorting process by effectively
rearranging the objects.

For the Density Estimation method, our results
(see Table. III) indicate successful sweeps in 22 of
the 27 configurations tested. This method, which
focuses on the object density within the workspace,
demonstrates its potential in effectively organizing
objects, particularly in environments with unevenly
distributed waste items.

A noteworthy observation from our results is that
in certain instances, the metric values decreased
post-sweeping. This trend suggests an increase in
clutter or a less optimal distribution of objects after
the sweep. Such outcomes highlight the complexity
of the sweeping task and the fact that improved ob-
ject visibility and accessibility are not guaranteed in
every scenario. Our metrics serve as crucial tools in
these cases, providing quantitative insights that help
us understand and analyze the efficacy of different



Fig. 5: Difference in metric values after sweeping
using kmeans for each configurations

Fig. 6: Difference in metric values after sweeping
using pca for each configurations

sweeping strategies under varying conditions.
To enhance our understanding of the evaluation

results, we plotted (Fig. 5-7) the differences in met-
ric values post-sweeping. This analytical approach
aims to shed light on the relative effectiveness
of each method. Notably, while comparing results
within the same configurations, the trends in the
differences for standard deviation and geometric
spread may vary. This variation is expected, as
these metrics do not necessarily measure the same
aspects. Geometric spread tends to favor configura-
tions with higher volume, whereas standard devia-
tion is indicative of uniformly spread distributions.

As illustrated in Fig 5, all observed difference
values are either positive or zero, with a zero differ-
ence suggesting no change in the pile post-sweep.
Conversely, both Fig 6 and Fig 7 show instances of
negative difference values. These negative values
signal ineffective sweeps, where the process results
in additional clutter or fails to adequately disperse
the cubes. This distinction is critical in evaluating
and refining the sweeping methods for optimal
performance.

Fig. 7: Difference in metric values after sweeping
using density estimation for each configurations
TABLE I: Evaluation on the performance of
Kmeans

Pile Before Sweeping After Sweeping
Configurations Std+hv geo+hv Std+hv geo+hv

mp1 0.086332 0.017289 0.094553 0.031276
lp 0.087776 0.021416 0.090089 0.040224
tp 0.087762 0.021527 0.091966 0.037509
cp 0.087202 0.020378 0.090306 0.044054
mp1 0.086332 0.017289 0.094553 0.031276
mp2 0.086377 0.021567 0.091938 0.041520
mp3 0.087858 0.032249 0.091587 0.054315
mp4 0.092726 0.064012 0.096085 0.086173
p1 0.089860 0.026188 0.097042 0.042912
p2 0.085122 0.012423 0.088835 0.024319
p3 0.085278 0.021819 0.088364 0.042166
p4 0.091816 0.032881 0.103498 0.064776
p5 0.092358 0.059717 0.094747 0.076231
p6 0.092955 0.045098 0.096159 0.054119
p7 0.082787 0.012254 0.087373 0.024115
p8 0.083313 0.015363 0.087430 0.030321
p9 0.088554 0.025489 0.095917 0.038074
p10 0.089053 0.037870 0.090833 0.048034
p11 0.084804 0.028713 0.089385 0.053151
p12 0.087186 0.034015 0.094963 0.047128
p13 0.084253 0.020765 0.087509 0.036529
p14 0.084864 0.011510 0.091580 0.028487
p15 0.094213 0.032150 0.103819 0.049718
p16 0.082816 0.007278 0.088276 0.031999
p17 0.086634 0.016594 0.091220 0.041507
p18 0.082957 0.011922 0.087951 0.026140
p19 0.090420 0.040092 0.090420 0.040092
p20 0.084195 0.027178 0.088512 0.051562

VII. CONCLUSION

The results provide a valuable insights into dif-
ferent non-learning based interactive sorting and
searching methods in the context of robotic waste
sorting. By quantitatively assessing their perfor-
mance across a range of scenarios, we gain a
deeper understanding of the underlying dynamics



TABLE II: Evaluation on the performance of PCA

Pile Configurations Before Sweeping After Sweeping
Std+hv geo+hv Std+hv geo+hv

lp 0.087833 0.020494 0.087833 0.020494
tp 0.087868 0.021622 0.090754 0.036803
cp 0.087140 0.020306 0.090786 0.039607
mp1 0.086416 0.017515 0.090539 0.022362
mp2 0.086407 0.021442 0.086407 0.021442
mp3 0.087916 0.032687 0.087889 0.032112
mp4 0.092703 0.064623 0.092719 0.064625
p1 0.089539 0.025930 0.097601 0.045114
p2 0.085093 0.012405 0.085146 0.013092
p3 0.085268 0.021813 0.086077 0.031727
p4 0.091786 0.030762 0.092149 0.039045
p5 0.092635 0.055098 0.092635 0.055098
p6 0.092756 0.045304 0.093501 0.068019
p7 0.082786 0.012254 0.081014 0.005305
p8 0.083328 0.015336 0.086991 0.025935
p9 0.087734 0.025059 0.087737 0.025057
p10 0.089187 0.039116 0.083613 0.045285
p11 0.085258 0.025838 0.085500 0.027350
p12 0.087260 0.037581 0.084619 0.039566
p13 0.084253 0.020765 0.083462 0.018755
p14 0.084897 0.011522 0.083856 0.013350
p15 0.094191 0.033916 0.094767 0.042503
p16 0.082816 0.007278 0.084679 0.021597
p17 0.086634 0.016600 0.086634 0.016600
p18 0.083031 0.011973 0.084833 0.020415
p19 0.090067 0.040859 0.091036 0.051285
p20 0.084632 0.028795 0.084828 0.034817

of the object rearrangement task. This knowledge
is instrumental in refining our approaches and de-
veloping more sophisticated algorithms that can
adapt to the intricate challenges of automated waste
management. Looking ahead, we are poised to
explore the integration of learning-based and com-
puter vision techniques for interactive segmenta-
tion, aiming to further augment the efficiency and
effectiveness of sorting processes.
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